在姜为先院士的实验室里,秦克和宁青筠过得很充实也很忙碌,早上两人研究三维空间中的N-S方程组光滑解的存在性问题,下午则在“湍流小组”里做流体力学的应用实验。
秦克手里的S级知识《非线性偏微分方程‘纳维-斯托克斯方程’的探究与详解》前中后篇,有非常丰富的理论知识,包括N-S方程的质量守恒、动量定理、能量守恒详解,N-S方程与欧拉法的关系,N-S方程在牛顿流体与不可压缩流体中的变化等等。
此外还有欧拉方程和边界层方程等变种,更有一千多个特解下的具体应用——要知道目前世界上公布出来的特解只有一百多个——累计超过600页。
但唯独没有完整的N-S方程组光滑解的存在性答案,也没有明确的证明过程,更没有所谓的方程通解。
可以说,前中后篇更多的是对N-S方程的理论、应用层面的探究,足以让原本就比较擅长流体力学的秦克成为个中的绝顶高手,却无法直接得到千禧年数学猜想的答案。
如果秦克没有猜错,“三维空间中的N-S方程组光滑解的存在性”问题,以及N-S方程是否存在通解等问题,都要在完结篇里才能找到答案。
这样的知识编排有其合理性,首先谁也不能否认N-S方程是复合了数学与物理的问题,通过前、中、后篇的理论与应用知识,才能更深入地了解N-S方程本身。
比如什么时候N-S方程才会有解?
那就是针对具体的应用问题,引入方程的附加前提条件,使得N-S方程的前期几个变量逐一变成了定量,非线性偏微分方程转化为了正常的偏微分方程,自然就能求得出解,并解决出在设定条件下的流体力学问题。
但这样新的问题又会产生,N-S方程只有在特定情况下才会有光滑解,并无普遍意义下的通解。
这就意味着,如果想用N-S方程解决具体的流体力学问题,就必须事先得到别人已得到的特解,及其前置条件;或者自己深入研究N-S方程,并设置前置条件、求出特解。
这样的效率无疑是低效的,就像手工作坊永远只能依靠匠人的手工技艺进行生产,既容易出现瑕疵错漏,也无法实现现代的自动流水生产线作业一样。
而不可否认的是,如果没有经过手工作坊的练习与研究,是无法一下子就进化到自动流水生产线的。
这也是《非线性偏微分方程‘纳维-斯托克斯方程’的探究与详解》前中后篇的基
(本章节未完结,点击下一页翻页继续阅读)